请选择时期:
怀孕准备 怀孕 分娩 宝宝0-1岁 宝宝1-3岁 宝宝3-6岁

多重分形如何理解(多重分形通俗理解)

来源: 最后更新:22-11-03 02:18:17

导读:1、多重分形(Multifractal),是描述在不规则的分形空间之上质量分布的定量化工具。2、现实中的复杂系统一般都具有自相似特征,这种自相似性不仅仅体现为几何形体上的自相似,也体现为某种质量、测度在空间上的分配。例如

1、多重分形(Multifractal),是描述在不规则的分形空间之上质量分布的定量化工具。

2、现实中的复杂系统一般都具有自相似特征,这种自相似性不仅仅体现为几何形体上的自相似,也体现为某种质量、测度在空间上的分配。例如,当我们考察人类城市中人口或者灯光在空间上的分布的时候,我们实际上在考查一个三维空间中的曲面。其中,曲面的横纵坐标分别是城市空间的经纬度,而高度坐标是对应经纬度点的人口或者灯光的密度值。然而,如果我们真的画出来这样的曲面,就会发现它并不光滑,而是非常地参差不齐,波动涨落非常剧烈的,因此传统的欧几里德几何工具以及微积分数学很难刻画。如果我们做这个曲面的等高线图,就会发现,每个等高线所包围的区域都是非常参差不齐的分形几何体。那么,我们该如何对这类不规则的空间分布进行刻画?多重分形(Multifractal)便是描述这类在不规则的分形空间之上质量分布的定量化工具。

标签: 多重分形如何理解  

免责声明:本文系转载,版权归原作者所有;旨在传递信息,其原创性以及文中陈述文字和内容未经本站证实。

本文地址:http://www.kidbbs.com/baike/zonghe/966802.html

关于我们 | 广告服务 | 网站合作 | 免责声明 | 联系我们| 网站地图

© 2022-2024 儿童乐园网 all rights reserved. 沪ICP备13022048号-9

声明: 本站文章均来自互联网,不代表本站观点 如有异议 请与本站联系 联系邮箱:kefu#kidbbs.com (请把#替换成@)